кешбака

f carlevaro econometric modeling and analysis of residential water demand based on unbalanced panel data



F. Carlevaro Econometric Modeling and Analysis of Residential Water Demand Based on Unbalanced Panel Data F. Carlevaro Econometric Modeling and Analysis of Residential Water Demand Based on Unbalanced Panel Data Новинка

F. Carlevaro Econometric Modeling and Analysis of Residential Water Demand Based on Unbalanced Panel Data

This paper develops an econometric methodology devised to analyze a sample of time unbalanced panel data on residential water consumption in the French island La Reunion with the purpose to bring out the main determinants of household water consumption and estimate the importance of water consumption by uses. For this purpose, we specify a daily panel econometric model and derive, by performing a time aggregation, a general linear regression model accounting for water consumption data recorded on periods of any calendar date and time length. To estimate efficiently the parameters of this model we develop a feasible two step generalized least square method. Using the principle of best linear unbiaised prediction, we finally develop an approach allowing to consistenly break down the volume of water consumption recorded on household water bills by uses, namely by enforcing this estimated decomposition to add up to the observed total. The application of this methodology to a sample of 437 unbalanced panel observations shows the scope of this approach for the empirical analysis of actual data.
I. Gusti Ngurah Agung Panel Data Analysis using EViews I. Gusti Ngurah Agung Panel Data Analysis using EViews Новинка

I. Gusti Ngurah Agung Panel Data Analysis using EViews

A comprehensive and accessible guide to panel data analysis using EViews software This book explores the use of EViews software in creating panel data analysis using appropriate empirical models and real datasets. Guidance is given on developing alternative descriptive statistical summaries for evaluation and providing policy analysis based on pool panel data. Various alternative models based on panel data are explored, including univariate general linear models, fixed effect models and causal models, and guidance on the advantages and disadvantages of each one is given. Panel Data Analysis using EViews: Provides step-by-step guidance on how to apply EViews software to panel data analysis using appropriate empirical models and real datasets. Examines a variety of panel data models along with the author’s own empirical findings, demonstrating the advantages and limitations of each model. Presents growth models, time-related effects models, and polynomial models, in addition to the models which are commonly applied for panel data. Includes more than 250 examples divided into three groups of models (stacked, unstacked, and structured panel data), together with notes and comments. Provides guidance on which models not to use in a given scenario, along with advice on viable alternatives. Explores recent new developments in panel data analysis An essential tool for advanced undergraduate or graduate students and applied researchers in finance, econometrics and population studies. Statisticians and data analysts involved with data collected over long time periods will also find this book a useful resource.
Saleh Joseph Homer Spacecraft Reliability and Multi-State Failures. A Statistical Approach Saleh Joseph Homer Spacecraft Reliability and Multi-State Failures. A Statistical Approach Новинка

Saleh Joseph Homer Spacecraft Reliability and Multi-State Failures. A Statistical Approach

The aerospace community has long recognized and repeatedly emphasizes the importance of reliability for space systems. Despite this, little has been published in book form on the topic. Spacecraft Reliability and Multi-state Failures addresses this gap in the literature, offering a unique focus on spacecraft reliability based on extensive statistical analysis of system and subsystem anomalies and failures. The authors provide new results pertaining to spacecraft reliability based on extensive statistical analysis of on-orbit anomaly and failure data that will be particularly useful to spacecraft manufacturers and designers, for example in guiding satellite (and subsystem) test and screening programs and providing an empirical basis for subsystem redundancy and reliability growth plans. The authors develop nonparametric results and parametric models of spacecraft and spacecraft subsystem reliability and multi-state failures, quantify the relative contribution of each subsystem to the failure of the satellites thus identifying the subsystems that drive spacecraft unreliability, and propose advanced stochastic modeling and analysis tools for the reliability and survivability of spacecraft and space-based networks. Spacecraft Reliability and Multi-state Failures provides new nonparametric results pertaining to spacecraft reliability based on extensive statistical analysis of on-orbit anomaly and failure data; develops parametric models of spacecraft and spacecraft subsystem reliability and multi-state failures quantifies the relative contribution of each subsystem to the failure of the satellites proposes advanced stochastic modeling and analysis tools for the reliability and survivability of spacecraft and space-based networks. provides a dedicated treatment of the reliability and subsystem anomalies of communication spacecraft in geostationary orbit.
Bendat Julius S. Random Data. Analysis and Measurement Procedures Bendat Julius S. Random Data. Analysis and Measurement Procedures Новинка

Bendat Julius S. Random Data. Analysis and Measurement Procedures

12123.14 руб. Найти похожее
A timely update of the classic book on the theory and application of random data analysis First published in 1971, Random Data served as an authoritative book on the analysis of experimental physical data for engineering and scientific applications. This Fourth Edition features coverage of new developments in random data management and analysis procedures that are applicable to a broad range of applied fields, from the aerospace and automotive industries to oceanographic and biomedical research. This new edition continues to maintain a balance of classic theory and novel techniques. The authors expand on the treatment of random data analysis theory, including derivations of key relationships in probability and random process theory. The book remains unique in its practical treatment of nonstationary data analysis and nonlinear system analysis, presenting the latest techniques on modern data acquisition, storage, conversion, and qualification of random data prior to its digital analysis. The Fourth Edition also includes: A new chapter on frequency domain techniques to model and identify nonlinear systems from measured input/output random data New material on the analysis of multiple-input/single-output linear models The latest recommended methods for data acquisition and processing of random data Important mathematical formulas to design experiments and evaluate results of random data analysis and measurement procedures Answers to the problem in each chapter Comprehensive and self-contained, Random Data, Fourth Edition is an indispensible book for courses on random data analysis theory and applications at the upper-undergraduate and graduate level. It is also an insightful reference for engineers and scientists who use statistical methods to investigate and solve problems with dynamic data.
Wang Jichuan Structural Equation Modeling. Applications Using Mplus Wang Jichuan Structural Equation Modeling. Applications Using Mplus Новинка

Wang Jichuan Structural Equation Modeling. Applications Using Mplus

A reference guide for applications of SEM using Mplus Structural Equation Modeling: Applications Using Mplus is intended as both a teaching resource and a reference guide. Written in non-mathematical terms, this book focuses on the conceptual and practical aspects of Structural Equation Modeling (SEM). Basic concepts and examples of various SEM models are demonstrated along with recently developed advanced methods, such as mixture modeling and model-based power analysis and sample size estimate for SEM. The statistical modeling program, Mplus, is also featured and provides researchers with a flexible tool to analyze their data with an easy-to-use interface and graphical displays of data and analysis results. Key features: Presents a useful reference guide for applications of SEM whilst systematically demonstrating various advanced SEM models, such as multi-group and mixture models using Mplus. Discusses and demonstrates various SEM models using both cross-sectional and longitudinal data with both continuous and categorical outcomes. Provides step-by-step instructions of model specification and estimation, as well as detail interpretation of Mplus results. Explores different methods for sample size estimate and statistical power analysis for SEM. By following the examples provided in this book, readers will be able to build their own SEM models using Mplus. Teachers, graduate students, and researchers in social sciences and health studies will also benefit from this book.
James Thompson R. Empirical Model Building. Data, Models, and Reality James Thompson R. Empirical Model Building. Data, Models, and Reality Новинка

James Thompson R. Empirical Model Building. Data, Models, and Reality

Praise for the First Edition «This…novel and highly stimulating book, which emphasizes solving real problems…should be widely read. It will have a positive and lasting effect on the teaching of modeling and statistics in general.» – Short Book Reviews This new edition features developments and real-world examples that showcase essential empirical modeling techniques Successful empirical model building is founded on the relationship between data and approximate representations of the real systems that generated that data. As a result, it is essential for researchers who construct these models to possess the special skills and techniques for producing results that are insightful, reliable, and useful. Empirical Model Building: Data, Models, and Reality, Second Edition presents a hands-on approach to the basic principles of empirical model building through a shrewd mixture of differential equations, computer-intensive methods, and data. The book outlines both classical and new approaches and incorporates numerous real-world statistical problems that illustrate modeling approaches that are applicable to a broad range of audiences, including applied statisticians and practicing engineers and scientists. The book continues to review models of growth and decay, systems where competition and interaction add to the complextiy of the model while discussing both classical and non-classical data analysis methods. This Second Edition now features further coverage of momentum based investing practices and resampling techniques, showcasing their importance and expediency in the real world. The author provides applications of empirical modeling, such as computer modeling of the AIDS epidemic to explain why North America has most of the AIDS cases in the First World and data-based strategies that allow individual investors to build their own investment portfolios. Throughout the book, computer-based analysis is emphasized and newly added and updated exercises allow readers to test their comprehension of the presented material. Empirical Model Building, Second Edition is a suitable book for modeling courses at the upper-undergraduate and graduate levels. It is also an excellent reference for applied statisticians and researchers who carry out quantitative modeling in their everyday work.
Johnson Wayne P. Making Sense of Data I. A Practical Guide to Exploratory Data Analysis and Data Mining Johnson Wayne P. Making Sense of Data I. A Practical Guide to Exploratory Data Analysis and Data Mining Новинка

Johnson Wayne P. Making Sense of Data I. A Practical Guide to Exploratory Data Analysis and Data Mining

Praise for the First Edition “…a well-written book on data analysis and data mining that provides an excellent foundation…” —CHOICE “This is a must-read book for learning practical statistics and data analysis…” —Computing Reviews.com A proven go-to guide for data analysis, Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining, Second Edition focuses on basic data analysis approaches that are necessary to make timely and accurate decisions in a diverse range of projects. Based on the authors’ practical experience in implementing data analysis and data mining, the new edition provides clear explanations that guide readers from almost every field of study. In order to facilitate the needed steps when handling a data analysis or data mining project, a step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. The tools to summarize and interpret data in order to master data analysis are integrated throughout, and the Second Edition also features: Updated exercises for both manual and computer-aided implementation with accompanying worked examples New appendices with coverage on the freely available Traceis™ software, including tutorials using data from a variety of disciplines such as the social sciences, engineering, and finance New topical coverage on multiple linear regression and logistic regression to provide a range of widely used and transparent approaches Additional real-world examples of data preparation to establish a practical background for making decisions from data Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining, Second Edition is an excellent reference for researchers and professionals who need to achieve effective decision making from data. The Second Edition is also an ideal textbook for undergraduate and graduate-level courses in data analysis and data mining and is appropriate for cross-disciplinary courses found within computer science and engineering departments.
I. Gusti Ngurah Agung Cross Section and Experimental Data Analysis Using EViews I. Gusti Ngurah Agung Cross Section and Experimental Data Analysis Using EViews Новинка

I. Gusti Ngurah Agung Cross Section and Experimental Data Analysis Using EViews

A practical guide to selecting and applying the most appropriate model for analysis of cross section data using EViews. «This book is a reflection of the vast experience and knowledge of the author. It is a useful reference for students and practitioners dealing with cross sectional data analysis … The strength of the book lies in its wealth of material and well structured guidelines …» Prof. Yohanes Eko Riyanto, Nanyang Technological University, Singapore «This is superb and brilliant. Prof. Agung has skilfully transformed his best experiences into new knowledge … creating a new way of understanding data analysis.» Dr. I Putu Gede Ary Suta, The Ary Suta Center, Jakarta Basic theoretical concepts of statistics as well as sampling methods are often misinterpreted by students and less experienced researchers. This book addresses this issue by providing a hands-on practical guide to conducting data analysis using EViews combined with a variety of illustrative models (and their extensions). Models having numerically dependent variables based on a cross-section data set (such as univariate, multivariate and nonlinear models as well as non-parametric regressions) are concentrated on. It is shown that a wide variety of hypotheses can easily be tested using EViews. Cross Section and Experimental Data Analysis Using EViews: Provides step-by-step directions on how to apply EViews to cross section data analysis – from multivariate analysis and nonlinear models to non-parametric regression Presents a method to test for all possible hypotheses based on each model Proposes a new method for data analysis based on a multifactorial design model Demonstrates that statistical summaries in the form of tabulations are invaluable inputs for strategic decision making Contains 200 examples with special notes and comments based on the author’s own empirical findings as well as over 400 illustrative outputs of regressions from EViews Techniques are illustrated through practical examples from real situations Comes with supplementary material, including work-files containing selected equation and system specifications that have been applied in the book This user-friendly introduction to EViews is ideal for Advanced undergraduate and graduate students taking finance, econometrics, population, or public policy courses, as well as applied policy researchers.
Dehmer Matthias Statistical and Machine Learning Approaches for Network Analysis Dehmer Matthias Statistical and Machine Learning Approaches for Network Analysis Новинка

Dehmer Matthias Statistical and Machine Learning Approaches for Network Analysis

Explore the multidisciplinary nature of complex networks through machine learning techniques Statistical and Machine Learning Approaches for Network Analysis provides an accessible framework for structurally analyzing graphs by bringing together known and novel approaches on graph classes and graph measures for classification. By providing different approaches based on experimental data, the book uniquely sets itself apart from the current literature by exploring the application of machine learning techniques to various types of complex networks. Comprised of chapters written by internationally renowned researchers in the field of interdisciplinary network theory, the book presents current and classical methods to analyze networks statistically. Methods from machine learning, data mining, and information theory are strongly emphasized throughout. Real data sets are used to showcase the discussed methods and topics, which include: A survey of computational approaches to reconstruct and partition biological networks An introduction to complex networks—measures, statistical properties, and models Modeling for evolving biological networks The structure of an evolving random bipartite graph Density-based enumeration in structured data Hyponym extraction employing a weighted graph kernel Statistical and Machine Learning Approaches for Network Analysis is an excellent supplemental text for graduate-level, cross-disciplinary courses in applied discrete mathematics, bioinformatics, pattern recognition, and computer science. The book is also a valuable reference for researchers and practitioners in the fields of applied discrete mathematics, machine learning, data mining, and biostatistics.
Ruey S. Tsay Analysis of Financial Time Series Ruey S. Tsay Analysis of Financial Time Series Новинка

Ruey S. Tsay Analysis of Financial Time Series

This book provides a broad, mature, and systematic introduction to current financial econometric models and their applications to modeling and prediction of financial time series data. It utilizes real-world examples and real financial data throughout the book to apply the models and methods described. The author begins with basic characteristics of financial time series data before covering three main topics: Analysis and application of univariate financial time series The return series of multiple assets Bayesian inference in finance methods Key features of the new edition include additional coverage of modern day topics such as arbitrage, pair trading, realized volatility, and credit risk modeling; a smooth transition from S-Plus to R; and expanded empirical financial data sets. The overall objective of the book is to provide some knowledge of financial time series, introduce some statistical tools useful for analyzing these series and gain experience in financial applications of various econometric methods.
Antony James S. Multilevel Modeling Techniques and Applications in Institutional Research. New Directions in Institutional Research, Number 154 Antony James S. Multilevel Modeling Techniques and Applications in Institutional Research. New Directions in Institutional Research, Number 154 Новинка

Antony James S. Multilevel Modeling Techniques and Applications in Institutional Research. New Directions in Institutional Research, Number 154

Multilevel modeling is an increasingly popular multivariate technique that is widely applied in the social sciences. Increasingly, practitioners are making instructional decisions based on results from their multivariate analyses, which often come from nested data that lend themselves to multilevel modeling techniques. As data-driven decision making becomes more critical to colleges and universities, multilevel modeling is a tool that will lead to more efficient estimates and enhance understanding of complex relationships. This volume illustrates both the theoretical underpinnings and practical applications of multilevel modeling in IR. It introduces the fundamental concepts of multilevel modeling techniques in a conceptual and technical manner. Providing a range of examples of nested models that are based on linear and categorical outcomes, it then offers important suggestions about presenting results of multilevel models through charts and graphs. This is the 154th volume of this Jossey-Bass quarterly report series. Always timely and comprehensive, New Directions for Institutional Research provides planners and administrators in all types of academic institutions with guidelines in such areas as resource coordination, information analysis, program evaluation, and institutional management.
Frédéric Muttin Marine Coastal and Water Pollutions. Oil Spill Studies Frédéric Muttin Marine Coastal and Water Pollutions. Oil Spill Studies Новинка

Frédéric Muttin Marine Coastal and Water Pollutions. Oil Spill Studies

Identifying efficient solutions to protect coastal regions from marine pollution requires expertise from a range of specialties and strategic approaches. This book gathers information on the impact of oil spills at a coastal level from different experts’ points of view, identifying synergies between domains such as mathematics, numerical modeling, mechanics, biology, economics and law. The collaborative research presented here is based on the 4th International Workshop on Anti-Pollution and Marine Coastal Water Pollution, held in La Rochelle, France at the Engineering School EIGSI, in April 2012. The areas addressed include: materials and structures (fluid-structure and capture interaction, cable and membrane equations, optimization); coastal hydrodynamics (computational fluid dynamics, numerical analysis of shallow water equations, analytical and numerical derivatives); biological impacts (biology, multivariate analysis, indicators); and economics and law (compensation costs, insurance coverage, coastal vulnerability).
Duncan Irving H.B. Enhance Oil and Gas Exploration with Data-Driven Geophysical and Petrophysical Models Duncan Irving H.B. Enhance Oil and Gas Exploration with Data-Driven Geophysical and Petrophysical Models Новинка

Duncan Irving H.B. Enhance Oil and Gas Exploration with Data-Driven Geophysical and Petrophysical Models

Leverage Big Data analytics methodologies to add value to geophysical and petrophysical exploration data Enhance Oil & Gas Exploration with Data-Driven Geophysical and Petrophysical Models demonstrates a new approach to geophysics and petrophysics data analysis using the latest methods drawn from Big Data. Written by two geophysicists with a combined 30 years in the industry, this book shows you how to leverage continually maturing computational intelligence to gain deeper insight from specific exploration data. Case studies illustrate the value propositions of this alternative analytical workflow, and in-depth discussion addresses the many Big Data issues in geophysics and petrophysics. From data collection and context through real-world everyday applications, this book provides an essential resource for anyone involved in oil and gas exploration. Recent and continual advances in machine learning are driving a rapid increase in empirical modeling capabilities. This book shows you how these new tools and methodologies can enhance geophysical and petrophysical data analysis, increasing the value of your exploration data. Apply data-driven modeling concepts in a geophysical and petrophysical context Learn how to get more information out of models and simulations Add value to everyday tasks with the appropriate Big Data application Adjust methodology to suit diverse geophysical and petrophysical contexts Data-driven modeling focuses on analyzing the total data within a system, with the goal of uncovering connections between input and output without definitive knowledge of the system's physical behavior. This multi-faceted approach pushes the boundaries of conventional modeling, and brings diverse fields of study together to apply new information and technology in new and more valuable ways. Enhance Oil & Gas Exploration with Data-Driven Geophysical and Petrophysical Models takes you beyond traditional deterministic interpretation to the future of exploration data analysis.
Frédéric Muttin Marine Coastal and Water Pollutions. Oil Spill Studies Frédéric Muttin Marine Coastal and Water Pollutions. Oil Spill Studies Новинка

Frédéric Muttin Marine Coastal and Water Pollutions. Oil Spill Studies

Identifying efficient solutions to protect coastal regions from marine pollution requires expertise from a range of specialties and strategic approaches. This book gathers information on the impact of oil spills at a coastal level from different experts’ points of view, identifying synergies between domains such as mathematics, numerical modeling, mechanics, biology, economics and law. The collaborative research presented here is based on the 4th International Workshop on Anti-Pollution and Marine Coastal Water Pollution, held in La Rochelle, France at the Engineering School EIGSI, in April 2012. The areas addressed include: materials and structures (fluid-structure and capture interaction, cable and membrane equations, optimization); coastal hydrodynamics (computational fluid dynamics, numerical analysis of shallow water equations, analytical and numerical derivatives); biological impacts (biology, multivariate analysis, indicators); and economics and law (compensation costs, insurance coverage, coastal vulnerability).
Daniel Larose T. Discovering Knowledge in Data. An Introduction to Data Mining Daniel Larose T. Discovering Knowledge in Data. An Introduction to Data Mining Новинка

Daniel Larose T. Discovering Knowledge in Data. An Introduction to Data Mining

The field of data mining lies at the confluence of predictive analytics, statistical analysis, and business intelligence. Due to the ever-increasing complexity and size of data sets and the wide range of applications in computer science, business, and health care, the process of discovering knowledge in data is more relevant than ever before. This book provides the tools needed to thrive in today’s big data world. The author demonstrates how to leverage a company’s existing databases to increase profits and market share, and carefully explains the most current data science methods and techniques. The reader will “learn data mining by doing data mining”. By adding chapters on data modelling preparation, imputation of missing data, and multivariate statistical analysis, Discovering Knowledge in Data, Second Edition remains the eminent reference on data mining. The second edition of a highly praised, successful reference on data mining, with thorough coverage of big data applications, predictive analytics, and statistical analysis. Includes new chapters on Multivariate Statistics, Preparing to Model the Data, and Imputation of Missing Data, and an Appendix on Data Summarization and Visualization Offers extensive coverage of the R statistical programming language Contains 280 end-of-chapter exercises Includes a companion website for university instructors who adopt the book
Francisco Azuaje Bioinformatics and Biomarker Discovery. Omic Data Analysis for Personalized Medicine Francisco Azuaje Bioinformatics and Biomarker Discovery. Omic Data Analysis for Personalized Medicine Новинка

Francisco Azuaje Bioinformatics and Biomarker Discovery. Omic Data Analysis for Personalized Medicine

11136.91 руб. Найти похожее
This book is designed to introduce biologists, clinicians and computational researchers to fundamental data analysis principles, techniques and tools for supporting the discovery of biomarkers and the implementation of diagnostic/prognostic systems. The focus of the book is on how fundamental statistical and data mining approaches can support biomarker discovery and evaluation, emphasising applications based on different types of «omic» data. The book also discusses design factors, requirements and techniques for disease screening, diagnostic and prognostic applications. Readers are provided with the knowledge needed to assess the requirements, computational approaches and outputs in disease biomarker research. Commentaries from guest experts are also included, containing detailed discussions of methodologies and applications based on specific types of «omic» data, as well as their integration. Covers the main range of data sources currently used for biomarker discovery Covers the main range of data sources currently used for biomarker discovery Puts emphasis on concepts, design principles and methodologies that can be extended or tailored to more specific applications Offers principles and methods for assessing the bioinformatic/biostatistic limitations, strengths and challenges in biomarker discovery studies Discusses systems biology approaches and applications Includes expert chapter commentaries to further discuss relevance of techniques, summarize biological/clinical implications and provide alternative interpretations
Bart Baesens Credit Risk Analytics. Measurement Techniques, Applications, and Examples in SAS Bart Baesens Credit Risk Analytics. Measurement Techniques, Applications, and Examples in SAS Новинка

Bart Baesens Credit Risk Analytics. Measurement Techniques, Applications, and Examples in SAS

The long-awaited, comprehensive guide to practical credit risk modeling Credit Risk Analytics provides a targeted training guide for risk managers looking to efficiently build or validate in-house models for credit risk management. Combining theory with practice, this book walks you through the fundamentals of credit risk management and shows you how to implement these concepts using the SAS credit risk management program, with helpful code provided. Coverage includes data analysis and preprocessing, credit scoring; PD and LGD estimation and forecasting, low default portfolios, correlation modeling and estimation, validation, implementation of prudential regulation, stress testing of existing modeling concepts, and more, to provide a one-stop tutorial and reference for credit risk analytics. The companion website offers examples of both real and simulated credit portfolio data to help you more easily implement the concepts discussed, and the expert author team provides practical insight on this real-world intersection of finance, statistics, and analytics. SAS is the preferred software for credit risk modeling due to its functionality and ability to process large amounts of data. This book shows you how to exploit the capabilities of this high-powered package to create clean, accurate credit risk management models. Understand the general concepts of credit risk management Validate and stress-test existing models Access working examples based on both real and simulated data Learn useful code for implementing and validating models in SAS Despite the high demand for in-house models, there is little comprehensive training available; practitioners are left to comb through piece-meal resources, executive training courses, and consultancies to cobble together the information they need. This book ends the search by providing a comprehensive, focused resource backed by expert guidance. Credit Risk Analytics is the reference every risk manager needs to streamline the modeling process.
Xu Rui Clustering Xu Rui Clustering Новинка

Xu Rui Clustering

10288.29 руб. Найти похожее
This is the first book to take a truly comprehensive look at clustering. It begins with an introduction to cluster analysis and goes on to explore: proximity measures; hierarchical clustering; partition clustering; neural network-based clustering; kernel-based clustering; sequential data clustering; large-scale data clustering; data visualization and high-dimensional data clustering; and cluster validation. The authors assume no previous background in clustering and their generous inclusion of examples and references help make the subject matter comprehensible for readers of varying levels and backgrounds.
Wikle Christopher K. Statistics for Spatio-Temporal Data Wikle Christopher K. Statistics for Spatio-Temporal Data Новинка

Wikle Christopher K. Statistics for Spatio-Temporal Data

Winner of the 2013 DeGroot Prize. A state-of-the-art presentation of spatio-temporal processes, bridging classic ideas with modern hierarchical statistical modeling concepts and the latest computational methods Noel Cressie and Christopher K. Wikle, are also winners of the 2011 PROSE Award in the Mathematics category, for the book “Statistics for Spatio-Temporal Data” (2011), published by John Wiley and Sons. (The PROSE awards, for Professional and Scholarly Excellence, are given by the Association of American Publishers, the national trade association of the US book publishing industry.) Statistics for Spatio-Temporal Data has now been reprinted with small corrections to the text and the bibliography. The overall content and pagination of the new printing remains the same; the difference comes in the form of corrections to typographical errors, editing of incomplete and missing references, and some updated spatio-temporal interpretations. From understanding environmental processes and climate trends to developing new technologies for mapping public-health data and the spread of invasive-species, there is a high demand for statistical analyses of data that take spatial, temporal, and spatio-temporal information into account. Statistics for Spatio-Temporal Data presents a systematic approach to key quantitative techniques that incorporate the latest advances in statistical computing as well as hierarchical, particularly Bayesian, statistical modeling, with an emphasis on dynamical spatio-temporal models. Cressie and Wikle supply a unique presentation that incorporates ideas from the areas of time series and spatial statistics as well as stochastic processes. Beginning with separate treatments of temporal data and spatial data, the book combines these concepts to discuss spatio-temporal statistical methods for understanding complex processes. Topics of coverage include: Exploratory methods for spatio-temporal data, including visualization, spectral analysis, empirical orthogonal function analysis, and LISAs Spatio-temporal covariance functions, spatio-temporal kriging, and time series of spatial processes Development of hierarchical dynamical spatio-temporal models (DSTMs), with discussion of linear and nonlinear DSTMs and computational algorithms for their implementation Quantifying and exploring spatio-temporal variability in scientific applications, including case studies based on real-world environmental data Throughout the book, interesting applications demonstrate the relevance of the presented concepts. Vivid, full-color graphics emphasize the visual nature of the topic, and a related FTP site contains supplementary material. Statistics for Spatio-Temporal Data is an excellent book for a graduate-level course on spatio-temporal statistics. It is also a valuable reference for researchers and practitioners in the fields of applied mathematics, engineering, and the environmental and health sciences.
Mun Eun-Young Log-Linear Modeling. Concepts, Interpretation, and Application Mun Eun-Young Log-Linear Modeling. Concepts, Interpretation, and Application Новинка

Mun Eun-Young Log-Linear Modeling. Concepts, Interpretation, and Application

An easily accessible introduction to log-linear modeling for non-statisticians Highlighting advances that have lent to the topic's distinct, coherent methodology over the past decade, Log-Linear Modeling: Concepts, Interpretation, and Application provides an essential, introductory treatment of the subject, featuring many new and advanced log-linear methods, models, and applications. The book begins with basic coverage of categorical data, and goes on to describe the basics of hierarchical log-linear models as well as decomposing effects in cross-classifications and goodness-of-fit tests. Additional topics include: The generalized linear model (GLM) along with popular methods of coding such as effect coding and dummy coding Parameter interpretation and how to ensure that the parameters reflect the hypotheses being studied Symmetry, rater agreement, homogeneity of association, logistic regression, and reduced designs models Throughout the book, real-world data illustrate the application of models and understanding of the related results. In addition, each chapter utilizes R, SYSTAT®, and §¤EM software, providing readers with an understanding of these programs in the context of hierarchical log-linear modeling. Log-Linear Modeling is an excellent book for courses on categorical data analysis at the upper-undergraduate and graduate levels. It also serves as an excellent reference for applied researchers in virtually any area of study, from medicine and statistics to the social sciences, who analyze empirical data in their everyday work.
Eddy van der Maarel Modelling Transport Eddy van der Maarel Modelling Transport Новинка

Eddy van der Maarel Modelling Transport

Already the market leader in the field, Modelling Transport has become still more indispensible following a thorough and detailed update. Enhancements include two entirely new chapters on modelling for private sector projects and on activity-based modelling; a new section on dynamic assignment and micro-simulation; and sizeable updates to sections on disaggregate modelling and stated preference design and analysis. It also tackles topical issues such as valuation of externalities and the role of GPS in travel time surveys. Providing unrivalled depth and breadth of coverage, each topic is approached as a modelling exercise with discussion of the roles of theory, data, model specification, estimation, validation and application. The authors present the state of the art and its practical application in a pedagogic manner, easily understandable to both students and practitioners. Follows on from the highly successful third edition universally acknowledged as the leading text on transport modelling techniques and applications Includes two new chapters on modelling for private sector projects and activity based modeling, and numerous updates to existing chapters Incorporates treatment of recent issues and concerns like risk analysis and the dynamic interaction between land use and transport Provides comprehensive and rigorous information and guidance, enabling readers to make practical use of every available technique Relates the topics to new external factors and technologies such as global warming, valuation of externalities and global positioning systems (GPS).
Mike Cheung W.-L. Meta-Analysis. A Structural Equation Modeling Approach Mike Cheung W.-L. Meta-Analysis. A Structural Equation Modeling Approach Новинка

Mike Cheung W.-L. Meta-Analysis. A Structural Equation Modeling Approach

Presents a novel approach to conducting meta-analysis using structural equation modeling. Structural equation modeling (SEM) and meta-analysis are two powerful statistical methods in the educational, social, behavioral, and medical sciences. They are often treated as two unrelated topics in the literature. This book presents a unified framework on analyzing meta-analytic data within the SEM framework, and illustrates how to conduct meta-analysis using the metaSEM package in the R statistical environment. Meta-Analysis: A Structural Equation Modeling Approach begins by introducing the importance of SEM and meta-analysis in answering research questions. Key ideas in meta-analysis and SEM are briefly reviewed, and various meta-analytic models are then introduced and linked to the SEM framework. Fixed-, random-, and mixed-effects models in univariate and multivariate meta-analyses, three-level meta-analysis, and meta-analytic structural equation modeling, are introduced. Advanced topics, such as using restricted maximum likelihood estimation method and handling missing covariates, are also covered. Readers will learn a single framework to apply both meta-analysis and SEM. Examples in R and in Mplus are included. This book will be a valuable resource for statistical and academic researchers and graduate students carrying out meta-analyses, and will also be useful to researchers and statisticians using SEM in biostatistics. Basic knowledge of either SEM or meta-analysis will be helpful in understanding the materials in this book.
Alberto Pistocchi GIS Based Chemical Fate Modeling. Principles and Applications Alberto Pistocchi GIS Based Chemical Fate Modeling. Principles and Applications Новинка

Alberto Pistocchi GIS Based Chemical Fate Modeling. Principles and Applications

Explains how GIS enhances the development of chemical fate and transport models Over the past decade, researchers have discovered that geographic information systems (GIS) are not only excellent tools for managing and displaying maps, but also useful in the analysis of chemical fate and transport in the environment. Among its many benefits, GIS facilitates the identification of critical factors that drive chemical fate and transport. Moreover, GIS makes it easier to communicate and explain key model assumptions. Based on the author's firsthand experience in environmental assessment, GIS Based Chemical Fate Modeling explores both GIS and chemical fate and transport modeling fundamentals, creating an interface between the two domains. It then explains how GIS analytical functions enable scientists to develop simple, yet comprehensive spatially explicit chemical fate and transport models that support real-world applications. In addition, the book features: Practical examples of GIS based model calculations that serve as templates for the development of new applications Exercises enabling readers to create their own GIS based models Accompanying website featuring downloadable datasets used in the book's examples and exercises References to the literature, websites, data repositories, and online reports to facilitate further research Coverage of important topics such as spatial decision support systems and multi-criteria analysis as well as ecological and human health risk assessment in a spatial context GIS Based Chemical Fate Modeling makes a unique contribution to the environmental sciences by explaining how GIS analytical functions enhance the development and interpretation of chemical fate and transport models. Environmental scientists should turn to this book to gain a deeper understanding of the role of GIS in describing what happens to chemicals when they are released into the environment.
Peter Huber J. Data Analysis. What Can Be Learned From the Past 50 Years Peter Huber J. Data Analysis. What Can Be Learned From the Past 50 Years Новинка

Peter Huber J. Data Analysis. What Can Be Learned From the Past 50 Years

This book explores the many provocative questions concerning the fundamentals of data analysis. It is based on the time-tested experience of one of the gurus of the subject matter. Why should one study data analysis? How should it be taught? What techniques work best, and for whom? How valid are the results? How much data should be tested? Which machine languages should be used, if used at all? Emphasis on apprenticeship (through hands-on case studies) and anecdotes (through real-life applications) are the tools that Peter J. Huber uses in this volume. Concern with specific statistical techniques is not of immediate value; rather, questions of strategy – when to use which technique – are employed. Central to the discussion is an understanding of the significance of massive (or robust) data sets, the implementation of languages, and the use of models. Each is sprinkled with an ample number of examples and case studies. Personal practices, various pitfalls, and existing controversies are presented when applicable. The book serves as an excellent philosophical and historical companion to any present-day text in data analysis, robust statistics, data mining, statistical learning, or computational statistics.
Collins Linda M. Latent Class and Latent Transition Analysis. With Applications in the Social, Behavioral, and Health Sciences Collins Linda M. Latent Class and Latent Transition Analysis. With Applications in the Social, Behavioral, and Health Sciences Новинка

Collins Linda M. Latent Class and Latent Transition Analysis. With Applications in the Social, Behavioral, and Health Sciences

A modern, comprehensive treatment of latent class and latent transition analysis for categorical data On a daily basis, researchers in the social, behavioral, and health sciences collect information and fit statistical models to the gathered empirical data with the goal of making significant advances in these fields. In many cases, it can be useful to identify latent, or unobserved, subgroups in a population, where individuals' subgroup membership is inferred from their responses on a set of observed variables. Latent Class and Latent Transition Analysis provides a comprehensive and unified introduction to this topic through one-of-a-kind, step-by-step presentations and coverage of theoretical, technical, and practical issues in categorical latent variable modeling for both cross-sectional and longitudinal data. The book begins with an introduction to latent class and latent transition analysis for categorical data. Subsequent chapters delve into more in-depth material, featuring: A complete treatment of longitudinal latent class models Focused coverage of the conceptual underpinnings of interpretation and evaluationof a latent class solution Use of parameter restrictions and detection of identification problems Advanced topics such as multi-group analysis and the modeling and interpretation of interactions between covariates The authors present the topic in a style that is accessible yet rigorous. Each method is presented with both a theoretical background and the practical information that is useful for any data analyst. Empirical examples showcase the real-world applications of the discussed concepts and models, and each chapter concludes with a «Points to Remember» section that contains a brief summary of key ideas. All of the analyses in the book are performed using Proc LCA and Proc LTA, the authors' own software packages that can be run within the SAS® environment. A related Web site houses information on these freely available programs and the book's data sets, encouraging readers to reproduce the analyses and also try their own variations. Latent Class and Latent Transition Analysis is an excellent book for courses on categorical data analysis and latent variable models at the upper-undergraduate and graduate levels. It is also a valuable resource for researchers and practitioners in the social, behavioral, and health sciences who conduct latent class and latent transition analysis in their everyday work.
Harbers Matthias Tag-based Next Generation Sequencing Harbers Matthias Tag-based Next Generation Sequencing Новинка

Harbers Matthias Tag-based Next Generation Sequencing

13496.01 руб. Найти похожее
Tag-based approaches were originally designed to increase the throughput of capillary sequencing, where concatemers of short sequences were first used in expression profiling. New Next Generation Sequencing methods largely extended the use of tag-based approaches as the tag lengths perfectly match with the short read length of highly parallel sequencing reactions. Tag-based approaches will maintain their important role in life and biomedical science, because longer read lengths are often not required to obtain meaningful data for many applications. Whereas genome re-sequencing and de novo sequencing will benefit from ever more powerful sequencing methods, analytical applications can be performed by tag-based approaches, where the focus shifts from 'sequencing power' to better means of data analysis and visualization for common users. Today Next Generation Sequence data require powerful bioinformatics expertise that has to be converted into easy-to-use data analysis tools. The book's intention is to give an overview on recently developed tag-based approaches along with means of their data analysis together with introductions to Next-Generation Sequencing Methods, protocols and user guides to be an entry for scientists to tag-based approaches for Next Generation Sequencing.
Jasmina Hasanhodzic The Evolution of Technical Analysis. Financial Prediction from Babylonian Tablets to Bloomberg Terminals Jasmina Hasanhodzic The Evolution of Technical Analysis. Financial Prediction from Babylonian Tablets to Bloomberg Terminals Новинка

Jasmina Hasanhodzic The Evolution of Technical Analysis. Financial Prediction from Babylonian Tablets to Bloomberg Terminals

A comprehensive history of the evolution of technical analysis from ancient times to the Internet age Whether driven by mass psychology, fear or greed of investors, the forces of supply and demand, or a combination, technical analysis has flourished for thousands of years on the outskirts of the financial establishment. In The Evolution of Technical Analysis: Financial Prediction from Babylonian Tablets to Bloomberg Terminals, MIT's Andrew W. Lo details how the charting of past stock prices for the purpose of identifying trends, patterns, strength, and cycles within market data has allowed traders to make informed investment decisions based in logic, rather than on luck. The book Reveals the origins of technical analysis Compares and contrasts the Eastern practices of China and Japan to Western methods Details the contributions of pioneers such as Charles Dow, Munehisa Homma, Humphrey B. Neill, and William D. Gann The Evolution of Technical Analysis explores the fascinating history of technical analysis, tracing where technical analysts failed, how they succeeded, and what it all means for today's traders and investors.
Paul Ciana New Frontiers in Technical Analysis. Effective Tools and Strategies for Trading and Investing Paul Ciana New Frontiers in Technical Analysis. Effective Tools and Strategies for Trading and Investing Новинка

Paul Ciana New Frontiers in Technical Analysis. Effective Tools and Strategies for Trading and Investing

An essential guide to the most innovative technical trading tools and strategies available In today's investment arena, there is a growing demand to diversify investment strategies through numerous styles of contemporary market analysis, as well as a continuous search for increasing alpha. Paul Ciana, Bloomberg L.P.'s top liason to Technical Analysts worldwide, understands these challenges very well and that is why he has created New Frontiers in Technical Analysis. Paul, along with in-depth contributions from some of the worlds most accomplished market participants developed this reliable guide that contains some of the newest tools and strategies for analyzing today's markets. The methods discussed are based on the existing body of knowledge of technical analysis and have evolved to support, and appeal to technical, fundamental, and quantitative analysts alike. • It answers the question «What are other people using?» by quantifying the popularity of the universally accepted studies, and then explains how to use them • Includes thought provoking material on seasonality, sector rotation, and market distributions that can bolster portfolio performance • Presents ground-breaking tools and data visualizations that paint a vivid picture of the direction of trend by capitalizing on traditional indicators and eliminating many of their faults • And much more Engaging and informative, New Frontiers in Technical Analysis contains innovative insights that will sharpen your investments strategies and the way you view today's market.
Pawlowsky-Glahn Vera Compositional Data Analysis. Theory and Applications Pawlowsky-Glahn Vera Compositional Data Analysis. Theory and Applications Новинка

Pawlowsky-Glahn Vera Compositional Data Analysis. Theory and Applications

It is difficult to imagine that the statistical analysis of compositional data has been a major issue of concern for more than 100 years. It is even more difficult to realize that so many statisticians and users of statistics are unaware of the particular problems affecting compositional data, as well as their solutions. The issue of ``spurious correlation'', as the situation was phrased by Karl Pearson back in 1897, affects all data that measures parts of some whole, such as percentages, proportions, ppm and ppb. Such measurements are present in all fields of science, ranging from geology, biology, environmental sciences, forensic sciences, medicine and hydrology. This book presents the history and development of compositional data analysis along with Aitchison's log-ratio approach. Compositional Data Analysis describes the state of the art both in theoretical fields as well as applications in the different fields of science. Key Features: Reflects the state-of-the-art in compositional data analysis. Gives an overview of the historical development of compositional data analysis, as well as basic concepts and procedures. Looks at advances in algebra and calculus on the simplex. Presents applications in different fields of science, including, genomics, ecology, biology, geochemistry, planetology, chemistry and economics. Explores connections to correspondence analysis and the Dirichlet distribution. Presents a summary of three available software packages for compositional data analysis. Supported by an accompanying website featuring R code. Applied scientists working on compositional data analysis in any field of science, both in academia and professionals will benefit from this book, along with graduate students in any field of science working with compositional data.
Common Mistakes at CAE... And How to Avoid Them Common Mistakes at CAE... And How to Avoid Them Новинка

Common Mistakes at CAE... And How to Avoid Them

Focuses on the real mistakes students make in the exam and shows how to avoid them. This invaluable little book highlights the real mistakes that students make in the exam - and shows how to avoid them. Based on analysis of thousands of exam scripts, eac unit targets a key problem area. Clear explanations and exercises help students to use the language accurately. Regular tests offer students a further opportunity to check and consolidate what they have learnt. Highlights common mistakes that learners relly make Based on analysis of thousands of exam scripts Short, snappy explanations focus on key problem areas Includes exam-style exercises Highlights common mistakes that learners really make Based on analysis of thousands of exam scripts Short, snappy eplanations focus on key problem areas Includes exam-style exercises
Er-Ping Li Electrical Modeling and Design for 3D System Integration. 3D Integrated Circuits and Packaging, Signal Integrity, Power Integrity and EMC Er-Ping Li Electrical Modeling and Design for 3D System Integration. 3D Integrated Circuits and Packaging, Signal Integrity, Power Integrity and EMC Новинка

Er-Ping Li Electrical Modeling and Design for 3D System Integration. 3D Integrated Circuits and Packaging, Signal Integrity, Power Integrity and EMC

New advanced modeling methods for simulating the electromagnetic properties of complex three-dimensional electronic systems Based on the author's extensive research, this book sets forth tested and proven electromagnetic modeling and simulation methods for analyzing signal and power integrity as well as electromagnetic interference in large complex electronic interconnects, multilayered package structures, integrated circuits, and printed circuit boards. Readers will discover the state of the technology in electronic package integration and printed circuit board simulation and modeling. In addition to popular full-wave electromagnetic computational methods, the book presents new, more sophisticated modeling methods, offering readers the most advanced tools for analyzing and designing large complex electronic structures. Electrical Modeling and Design for 3D System Integration begins with a comprehensive review of current modeling and simulation methods for signal integrity, power integrity, and electromagnetic compatibility. Next, the book guides readers through: The macromodeling technique used in the electrical and electromagnetic modeling and simulation of complex interconnects in three-dimensional integrated systems The semi-analytical scattering matrix method based on the N-body scattering theory for modeling of three-dimensional electronic package and multilayered printed circuit boards with multiple vias Two- and three-dimensional integral equation methods for the analysis of power distribution networks in three-dimensional package integrations The physics-based algorithm for extracting the equivalent circuit of a complex power distribution network in three-dimensional integrated systems and printed circuit boards An equivalent circuit model of through-silicon vias Metal-oxide-semiconductor capacitance effects of through-silicon vias Engineers, researchers, and students can turn to this book for the latest techniques and methods for the electrical modeling and design of electronic packaging, three-dimensional electronic integration, integrated circuits, and printed circuit boards.
Rudis Bob Data-Driven Security. Analysis, Visualization and Dashboards Rudis Bob Data-Driven Security. Analysis, Visualization and Dashboards Новинка

Rudis Bob Data-Driven Security. Analysis, Visualization and Dashboards

Uncover hidden patterns of data and respond with countermeasures Security professionals need all the tools at their disposal to increase their visibility in order to prevent security breaches and attacks. This careful guide explores two of the most powerful ? data analysis and visualization. You'll soon understand how to harness and wield data, from collection and storage to management and analysis as well as visualization and presentation. Using a hands-on approach with real-world examples, this book shows you how to gather feedback, measure the effectiveness of your security methods, and make better decisions. Everything in this book will have practical application for information security professionals. Helps IT and security professionals understand and use data, so they can thwart attacks and understand and visualize vulnerabilities in their networks Includes more than a dozen real-world examples and hands-on exercises that demonstrate how to analyze security data and intelligence and translate that information into visualizations that make plain how to prevent attacks Covers topics such as how to acquire and prepare security data, use simple statistical methods to detect malware, predict rogue behavior, correlate security events, and more Written by a team of well-known experts in the field of security and data analysis Lock down your networks, prevent hacks, and thwart malware by improving visibility into the environment, all through the power of data and Security Using Data Analysis, Visualization, and Dashboards.
Mateu Jorge Spatio-temporal Design. Advances in Efficient Data Acquisition Mateu Jorge Spatio-temporal Design. Advances in Efficient Data Acquisition Новинка

Mateu Jorge Spatio-temporal Design. Advances in Efficient Data Acquisition

A state-of-the-art presentation of optimum spatio-temporal sampling design – bridging classic ideas with modern statistical modeling concepts and the latest computational methods. Spatio-temporal Design presents a comprehensive state-of-the-art presentation combining both classical and modern treatments of network design and planning for spatial and spatio-temporal data acquisition. A common problem set is interwoven throughout the chapters, providing various perspectives to illustrate a complete insight to the problem at hand. Motivated by the high demand for statistical analysis of data that takes spatial and spatio-temporal information into account, this book incorporates ideas from the areas of time series, spatial statistics and stochastic processes, and combines them to discuss optimum spatio-temporal sampling design. Spatio-temporal Design: Advances in Efficient Data Acquisition: Provides an up-to-date account of how to collect space-time data for monitoring, with a focus on statistical aspects and the latest computational methods Discusses basic methods and distinguishes between design and model-based approaches to collecting space-time data. Features model-based frequentist design for univariate and multivariate geostatistics, and second-phase spatial sampling. Integrates common data examples and case studies throughout the book in order to demonstrate the different approaches and their integration. Includes real data sets, data generating mechanisms and simulation scenarios. Accompanied by a supporting website featuring R code. Spatio-temporal Design presents an excellent book for graduate level students as well as a valuable reference for researchers and practitioners in the fields of applied mathematics, engineering, and the environmental and health sciences.
Philip McDonnell Optimal Portfolio Modeling. Models to Maximize Returns and Control Risk in Excel and R Philip McDonnell Optimal Portfolio Modeling. Models to Maximize Returns and Control Risk in Excel and R Новинка

Philip McDonnell Optimal Portfolio Modeling. Models to Maximize Returns and Control Risk in Excel and R

Optimal Portfolio Modeling is an easily accessible introduction to portfolio modeling for those who prefer an intuitive approach to this discipline. While early chapters provide engaging insights on the statistical properties of markets, this book quickly moves on to illustrate invaluable trading and risk control models based on popular programs such as Excel and the statistical modeling language R. This reliable resource presents modeling formulas that will allow you to effectively maximize the performance, minimize the drawdown, and manage the risk of your portfolio.
Kerr Kathleen F. Design and Analysis of Experiments in the Health Sciences Kerr Kathleen F. Design and Analysis of Experiments in the Health Sciences Новинка

Kerr Kathleen F. Design and Analysis of Experiments in the Health Sciences

An accessible and practical approach to the design and analysis of experiments in the health sciences Design and Analysis of Experiments in the Health Sciences provides a balanced presentation of design and analysis issues relating to data in the health sciences and emphasizes new research areas, the crucial topic of clinical trials, and state-of-the- art applications. Advancing the idea that design drives analysis and analysis reveals the design, the book clearly explains how to apply design and analysis principles in animal, human, and laboratory experiments while illustrating topics with applications and examples from randomized clinical trials and the modern topic of microarrays. The authors outline the following five types of designs that form the basis of most experimental structures: Completely randomized designs Randomized block designs Factorial designs Multilevel experiments Repeated measures designs A related website features a wealth of data sets that are used throughout the book, allowing readers to work hands-on with the material. In addition, an extensive bibliography outlines additional resources for further study of the presented topics. Requiring only a basic background in statistics, Design and Analysis of Experiments in the Health Sciences is an excellent book for introductory courses on experimental design and analysis at the graduate level. The book also serves as a valuable resource for researchers in medicine, dentistry, nursing, epidemiology, statistical genetics, and public health.
Netting F. Ellen Analyzing Social Policy. Multiple Perspectives for Critically Understanding and Evaluating Policy Netting F. Ellen Analyzing Social Policy. Multiple Perspectives for Critically Understanding and Evaluating Policy Новинка

Netting F. Ellen Analyzing Social Policy. Multiple Perspectives for Critically Understanding and Evaluating Policy

From formulation to implementation, an approach to the analysis of social policy through the lens of research Analyzing Social Policy prepares professionals and students to make better informed decisions related to identifying and understanding the intricacies and potential impact of social policymaking and enactment on their organization as well as their individual responsibilities, goals, and objectives. Authors Mary Katherine O'Connor and F. Ellen Netting thoroughly examine various approaches to the analysis of social policies and how these approaches provide the knowledge, multiple perspectives, and other resources to understand and grasp the nuances of social policy in all its complexity. Comprehensive and based on research, Analyzing Social Policy explores: An overview of the practice of social policy analysis The role of research in guiding policy analysis The idea of policy analyses as research Themes, assumptions, and major theories that undergird rational models of policy analysis Nonrational themes, assumptions, and major theories informing nontraditional interpretive and critical approaches to policy analysis Strategies for applying selected models and approaches when engaging in policy analysis as research Providing practitioners and students with a set of tools that can be used to enhance an understanding of what constitutes policy as well as acceptable standards for critical analysis of policy, this resource enables policy advocates—regardless of their level—to be political, strategic, and critical in their work.
Giudici Paolo Applied Data Mining for Business and Industry Giudici Paolo Applied Data Mining for Business and Industry Новинка

Giudici Paolo Applied Data Mining for Business and Industry

12123.14 руб. Найти похожее
The increasing availability of data in our current, information overloaded society has led to the need for valid tools for its modelling and analysis. Data mining and applied statistical methods are the appropriate tools to extract knowledge from such data. This book provides an accessible introduction to data mining methods in a consistent and application oriented statistical framework, using case studies drawn from real industry projects and highlighting the use of data mining methods in a variety of business applications. Introduces data mining methods and applications. Covers classical and Bayesian multivariate statistical methodology as well as machine learning and computational data mining methods. Includes many recent developments such as association and sequence rules, graphical Markov models, lifetime value modelling, credit risk, operational risk and web mining. Features detailed case studies based on applied projects within industry. Incorporates discussion of data mining software, with case studies analysed using R. Is accessible to anyone with a basic knowledge of statistics or data analysis. Includes an extensive bibliography and pointers to further reading within the text. Applied Data Mining for Business and Industry, 2nd edition is aimed at advanced undergraduate and graduate students of data mining, applied statistics, database management, computer science and economics. The case studies will provide guidance to professionals working in industry on projects involving large volumes of data, such as customer relationship management, web design, risk management, marketing, economics and finance.
Kristin Jarman H. The Art of Data Analysis. How to Answer Almost Any Question Using Basic Statistics Kristin Jarman H. The Art of Data Analysis. How to Answer Almost Any Question Using Basic Statistics Новинка

Kristin Jarman H. The Art of Data Analysis. How to Answer Almost Any Question Using Basic Statistics

A friendly and accessible approach to applying statistics in the real world With an emphasis on critical thinking, The Art of Data Analysis: How to Answer Almost Any Question Using Basic Statistics presents fun and unique examples, guides readers through the entire data collection and analysis process, and introduces basic statistical concepts along the way. Leaving proofs and complicated mathematics behind, the author portrays the more engaging side of statistics and emphasizes its role as a problem-solving tool. In addition, light-hearted case studies illustrate the application of statistics to real data analyses, highlighting the strengths and weaknesses of commonly used techniques. Written for the growing academic and industrial population that uses statistics in everyday life, The Art of Data Analysis: How to Answer Almost Any Question Using Basic Statistics highlights important issues that often arise when collecting and sifting through data. Featured concepts include: • Descriptive statistics • Analysis of variance • Probability and sample distributions • Confidence intervals • Hypothesis tests • Regression • Statistical correlation • Data collection • Statistical analysis with graphs Fun and inviting from beginning to end, The Art of Data Analysis is an ideal book for students as well as managers and researchers in industry, medicine, or government who face statistical questions and are in need of an intuitive understanding of basic statistical reasoning.
Hardin James W. Common Errors in Statistics (and How to Avoid Them) Hardin James W. Common Errors in Statistics (and How to Avoid Them) Новинка

Hardin James W. Common Errors in Statistics (and How to Avoid Them)

Praise for the Second Edition «All statistics students and teachers will find in this book a friendly and intelligentguide to . . . applied statistics in practice.» —Journal of Applied Statistics «. . . a very engaging and valuable book for all who use statistics in any setting.» —CHOICE «. . . a concise guide to the basics of statistics, replete with examples . . . a valuablereference for more advanced statisticians as well.» —MAA Reviews Now in its Third Edition, the highly readable Common Errors in Statistics (and How to Avoid Them) continues to serve as a thorough and straightforward discussion of basic statistical methods, presentations, approaches, and modeling techniques. Further enriched with new examples and counterexamples from the latest research as well as added coverage of relevant topics, this new edition of the benchmark book addresses popular mistakes often made in data collection and provides an indispensable guide to accurate statistical analysis and reporting. The authors' emphasis on careful practice, combined with a focus on the development of solutions, reveals the true value of statistics when applied correctly in any area of research. The Third Edition has been considerably expanded and revised to include: A new chapter on data quality assessment A new chapter on correlated data An expanded chapter on data analysis covering categorical and ordinal data, continuous measurements, and time-to-event data, including sections on factorial and crossover designs Revamped exercises with a stronger emphasis on solutions An extended chapter on report preparation New sections on factor analysis as well as Poisson and negative binomial regression Providing valuable, up-to-date information in the same user-friendly format as its predecessor, Common Errors in Statistics (and How to Avoid Them), Third Edition is an excellent book for students and professionals in industry, government, medicine, and the social sciences.
Kenett Ron S. Operational Risk Management. A Practical Approach to Intelligent Data Analysis Kenett Ron S. Operational Risk Management. A Practical Approach to Intelligent Data Analysis Новинка

Kenett Ron S. Operational Risk Management. A Practical Approach to Intelligent Data Analysis

Models and methods for operational risks assessment and mitigation are gaining importance in financial institutions, healthcare organizations, industry, businesses and organisations in general. This book introduces modern Operational Risk Management and describes how various data sources of different types, both numeric and semantic sources such as text can be integrated and analyzed. The book also demonstrates how Operational Risk Management is synergetic to other risk management activities such as Financial Risk Management and Safety Management. Operational Risk Management: a practical approach to intelligent data analysis provides practical and tested methodologies for combining structured and unstructured, semantic-based data, and numeric data, in Operational Risk Management (OpR) data analysis. Key Features: The book is presented in four parts: 1) Introduction to OpR Management, 2) Data for OpR Management, 3) OpR Analytics and 4) OpR Applications and its Integration with other Disciplines. Explores integration of semantic, unstructured textual data, in Operational Risk Management. Provides novel techniques for combining qualitative and quantitative information to assess risks and design mitigation strategies. Presents a comprehensive treatment of «near-misses» data and incidents in Operational Risk Management. Looks at case studies in the financial and industrial sector. Discusses application of ontology engineering to model knowledge used in Operational Risk Management. Many real life examples are presented, mostly based on the MUSING project co-funded by the EU FP6 Information Society Technology Programme. It provides a unique multidisciplinary perspective on the important and evolving topic of Operational Risk Management. The book will be useful to operational risk practitioners, risk managers in banks, hospitals and industry looking for modern approaches to risk management that combine an analysis of structured and unstructured data. The book will also benefit academics interested in research in this field, looking for techniques developed in response to real world problems.
Stehlik Jiri Mathematical and Computational Methods and Algorithms in Biomechanics. Human Skeletal Systems Stehlik Jiri Mathematical and Computational Methods and Algorithms in Biomechanics. Human Skeletal Systems Новинка

Stehlik Jiri Mathematical and Computational Methods and Algorithms in Biomechanics. Human Skeletal Systems

Cutting-edge solutions to current problems in orthopedics, supported by modeling and numerical analysis Despite the current successful methods and achievements of good joint implantations, it is essential to further optimize the shape of implants so they may better resist extreme long-term mechanical demands. This book provides the orthopedic, biomechanical, and mathematical basis for the simulation of surgical techniques in orthopedics. It focuses on the numerical modeling of total human joint replacements and simulation of their functions, along with the rigorous biomechanics of human joints and other skeletal parts. The book includes: An introduction to the anatomy and biomechanics of the human skeleton, biomaterials, and problems of alloarthroplasty The definition of selected simulated orthopedic problems Constructions of mathematical model problems of the biomechanics of the human skeleton and its parts Replacement parts of the human skeleton and corresponding mathematical model problems Detailed mathematical analyses of mathematical models based on functional analysis and finite element methods Biomechanical analyses of particular parts of the human skeleton, joints, and corresponding replacements A discussion of the problems of data processing from nuclear magnetic resonance imaging and computer tomography This timely book offers a wealth of information on the current research in this field. The theories presented are applied to specific problems of orthopedics. Numerical results are presented and discussed from both biomechanical and orthopedic points of view and treatment methods are also briefly addressed. Emphasis is placed on the variational approach to the investigated model problems while preserving the orthopedic nature of the investigated problems. The book also presents a study of algorithmic procedures based on these simulation models. This is a highly useful tool for designers, researchers, and manufacturers of joint implants who require the results of suggested experiments to improve existing shapes or to design new shapes. It also benefits graduate students in orthopedics, biomechanics, and applied mathematics.
Bittner Michael L. Epistemology of the Cell. A Systems Perspective on Biological Knowledge Bittner Michael L. Epistemology of the Cell. A Systems Perspective on Biological Knowledge Новинка

Bittner Michael L. Epistemology of the Cell. A Systems Perspective on Biological Knowledge

Honorable mention – Biomedicine and Neuroscience, 2011 Prose Awards An examination of how the cell should be described in order to effectively process biological data «The fruitful pursuit of biological knowledge requires one to take Einstein's admonition [on science without epistemology] as a practical demand for scientific research, to recognize Waddington's characterization of the subject matter of biology, and to embrace Wiener's conception of the form of biological knowledge in response to its subject matter. It is from this vantage point that we consider the epistemology of the cell.» —from the Preface In the era of high biological data throughput, biomedical engineers need a more systematic knowledge of the cell in order to perform more effective data handling. Epistemology of the Cell is the first authored book to break down this knowledge. This text examines the place of biological knowledge within the framework of science as a whole and addresses issues focused on the specific nature of biology, how biology is studied, and how biological knowledge is translated into applications, in particular with regard to medicine. The book opens with a general discussion of the historical development of human understanding of scientific knowledge, the scientific method, and the manner in which scientific knowledge is represented in mathematics. The narrative then gets specific for biology, focusing on knowledge of the cell, the basic unit of life. The salient point is the analogy between a systems-based analysis of factory regulation and the regulation of the cell. Each chapter represents a key topic of current interest, including: Causality and randomness Translational science Stochastic validation: classification Stochastic validation: networks Model-based experimentation in biology Epistemology of the Cell is written for biomedical researchers whose interests include bioinformatics, biological modeling, biostatistics, and biological signal processing.
Alan Agresti Categorical Data Analysis Alan Agresti Categorical Data Analysis Новинка

Alan Agresti Categorical Data Analysis

Praise for the Second Edition «A must-have book for anyone expecting to do research and/or applications in categorical data analysis.» —Statistics in Medicine «It is a total delight reading this book.» —Pharmaceutical Research «If you do any analysis of categorical data, this is an essential desktop reference.» —Technometrics The use of statistical methods for analyzing categorical data has increased dramatically, particularly in the biomedical, social sciences, and financial industries. Responding to new developments, this book offers a comprehensive treatment of the most important methods for categorical data analysis. Categorical Data Analysis, Third Edition summarizes the latest methods for univariate and correlated multivariate categorical responses. Readers will find a unified generalized linear models approach that connects logistic regression and Poisson and negative binomial loglinear models for discrete data with normal regression for continuous data. This edition also features: An emphasis on logistic and probit regression methods for binary, ordinal, and nominal responses for independent observations and for clustered data with marginal models and random effects models Two new chapters on alternative methods for binary response data, including smoothing and regularization methods, classification methods such as linear discriminant analysis and classification trees, and cluster analysis New sections introducing the Bayesian approach for methods in that chapter More than 100 analyses of data sets and over 600 exercises Notes at the end of each chapter that provide references to recent research and topics not covered in the text, linked to a bibliography of more than 1,200 sources A supplementary website showing how to use R and SAS; for all examples in the text, with information also about SPSS and Stata and with exercise solutions Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and methodologists, such as biostatisticians and researchers in the social and behavioral sciences, medicine and public health, marketing, education, finance, biological and agricultural sciences, and industrial quality control.
F. Knopf Carl Modeling, Analysis and Optimization of Process and Energy Systems F. Knopf Carl Modeling, Analysis and Optimization of Process and Energy Systems Новинка

F. Knopf Carl Modeling, Analysis and Optimization of Process and Energy Systems

Energy costs impact the profitability of virtually all industrial processes. Stressing how plants use power, and how that power is actually generated, this book provides a clear and simple way to understand the energy usage in various processes, as well as methods for optimizing these processes using practical hands-on simulations and a unique approach that details solved problems utilizing actual plant data. Invaluable information offers a complete energy-saving approach essential for both the chemical and mechanical engineering curricula, as well as for practicing engineers.
Schuenemeyer John Statistics for Earth and Environmental Scientists Schuenemeyer John Statistics for Earth and Environmental Scientists Новинка

Schuenemeyer John Statistics for Earth and Environmental Scientists

A comprehensive treatment of statistical applications for solving real-world environmental problems A host of complex problems face today's earth science community, such as evaluating the supply of remaining non-renewable energy resources, assessing the impact of people on the environment, understanding climate change, and managing the use of water. Proper collection and analysis of data using statistical techniques contributes significantly toward the solution of these problems. Statistics for Earth and Environmental Scientists presents important statistical concepts through data analytic tools and shows readers how to apply them to real-world problems. The authors present several different statistical approaches to the environmental sciences, including Bayesian and nonparametric methodologies. The book begins with an introduction to types of data, evaluation of data, modeling and estimation, random variation, and sampling—all of which are explored through case studies that use real data from earth science applications. Subsequent chapters focus on principles of modeling and the key methods and techniques for analyzing scientific data, including: Interval estimation and Methods for analyzinghypothesis testing of means time series data Spatial statistics Multivariate analysis Discrete distributions Experimental design Most statistical models are introduced by concept and application, given as equations, and then accompanied by heuristic justification rather than a formal proof. Data analysis, model building, and statistical inference are stressed throughout, and readers are encouraged to collect their own data to incorporate into the exercises at the end of each chapter. Most data sets, graphs, and analyses are computed using R, but can be worked with using any statistical computing software. A related website features additional data sets, answers to selected exercises, and R code for the book's examples. Statistics for Earth and Environmental Scientists is an excellent book for courses on quantitative methods in geology, geography, natural resources, and environmental sciences at the upper-undergraduate and graduate levels. It is also a valuable reference for earth scientists, geologists, hydrologists, and environmental statisticians who collect and analyze data in their everyday work.
Thomas Lumley Complex Surveys. A Guide to Analysis Using R Thomas Lumley Complex Surveys. A Guide to Analysis Using R Новинка

Thomas Lumley Complex Surveys. A Guide to Analysis Using R

A complete guide to carrying out complex survey analysis using R As survey analysis continues to serve as a core component of sociological research, researchers are increasingly relying upon data gathered from complex surveys to carry out traditional analyses. Complex Surveys is a practical guide to the analysis of this kind of data using R, the freely available and downloadable statistical programming language. As creator of the specific survey package for R, the author provides the ultimate presentation of how to successfully use the software for analyzing data from complex surveys while also utilizing the most current data from health and social sciences studies to demonstrate the application of survey research methods in these fields. The book begins with coverage of basic tools and topics within survey analysis such as simple and stratified sampling, cluster sampling, linear regression, and categorical data regression. Subsequent chapters delve into more technical aspects of complex survey analysis, including post-stratification, two-phase sampling, missing data, and causal inference. Throughout the book, an emphasis is placed on graphics, regression modeling, and two-phase designs. In addition, the author supplies a unique discussion of epidemiological two-phase designs as well as probability-weighting for causal inference. All of the book's examples and figures are generated using R, and a related Web site provides the R code that allows readers to reproduce the presented content. Each chapter concludes with exercises that vary in level of complexity, and detailed appendices outline additional mathematical and computational descriptions to assist readers with comparing results from various software systems. Complex Surveys is an excellent book for courses on sampling and complex surveys at the upper-undergraduate and graduate levels. It is also a practical reference guide for applied statisticians and practitioners in the social and health sciences who use statistics in their everyday work.
Vincent Granville Developing Analytic Talent. Becoming a Data Scientist Vincent Granville Developing Analytic Talent. Becoming a Data Scientist Новинка

Vincent Granville Developing Analytic Talent. Becoming a Data Scientist

Learn what it takes to succeed in the the most in-demand tech job Harvard Business Review calls it the sexiest tech job of the 21st century. Data scientists are in demand, and this unique book shows you exactly what employers want and the skill set that separates the quality data scientist from other talented IT professionals. Data science involves extracting, creating, and processing data to turn it into business value. With over 15 years of big data, predictive modeling, and business analytics experience, author Vincent Granville is no stranger to data science. In this one-of-a-kind guide, he provides insight into the essential data science skills, such as statistics and visualization techniques, and covers everything from analytical recipes and data science tricks to common job interview questions, sample resumes, and source code. The applications are endless and varied: automatically detecting spam and plagiarism, optimizing bid prices in keyword advertising, identifying new molecules to fight cancer, assessing the risk of meteorite impact. Complete with case studies, this book is a must, whether you're looking to become a data scientist or to hire one. Explains the finer points of data science, the required skills, and how to acquire them, including analytical recipes, standard rules, source code, and a dictionary of terms Shows what companies are looking for and how the growing importance of big data has increased the demand for data scientists Features job interview questions, sample resumes, salary surveys, and examples of job ads Case studies explore how data science is used on Wall Street, in botnet detection, for online advertising, and in many other business-critical situations Developing Analytic Talent: Becoming a Data Scientist is essential reading for those aspiring to this hot career choice and for employers seeking the best candidates.
Luca Massaron Python for Data Science For Dummies Luca Massaron Python for Data Science For Dummies Новинка

Luca Massaron Python for Data Science For Dummies

Unleash the power of Python for your data analysis projects with For Dummies! Python is the preferred programming language for data scientists and combines the best features of Matlab, Mathematica, and R into libraries specific to data analysis and visualization. Python for Data Science For Dummies shows you how to take advantage of Python programming to acquire, organize, process, and analyze large amounts of information and use basic statistics concepts to identify trends and patterns. You’ll get familiar with the Python development environment, manipulate data, design compelling visualizations, and solve scientific computing challenges as you work your way through this user-friendly guide. Covers the fundamentals of Python data analysis programming and statistics to help you build a solid foundation in data science concepts like probability, random distributions, hypothesis testing, and regression models Explains objects, functions, modules, and libraries and their role in data analysis Walks you through some of the most widely-used libraries, including NumPy, SciPy, BeautifulSoup, Pandas, and MatPlobLib Whether you’re new to data analysis or just new to Python, Python for Data Science For Dummies is your practical guide to getting a grip on data overload and doing interesting things with the oodles of information you uncover.

кешбака
Страницы:


Winner of the 2013 DeGroot Prize. A state-of-the-art presentation of spatio-temporal processes, bridging classic ideas with modern hierarchical statistical modeling concepts and the latest computational methods Noel Cressie and Christopher K. Wikle, are also winners of the 2011 PROSE Award in the Mathematics category, for the book “Statistics for Spatio-Temporal Data” (2011), published by John Wiley and Sons. (The PROSE awards, for Professional and Scholarly Excellence, are given by the Association of American Publishers, the national trade association of the US book publishing industry.) Statistics for Spatio-Temporal Data has now been reprinted with small corrections to the text and the bibliography. The overall content and pagination of the new printing remains the same; the difference comes in the form of corrections to typographical errors, editing of incomplete and missing references, and some updated spatio-temporal interpretations. From understanding environmental processes and climate trends to developing new technologies for mapping public-health data and the spread of invasive-species, there is a high demand for statistical analyses of data that take spatial, temporal, and spatio-temporal information into account. Statistics for Spatio-Temporal Data presents a systematic approach to key quantitative techniques that incorporate the latest advances in statistical computing as well as hierarchical, particularly Bayesian, statistical modeling, with an emphasis on dynamical spatio-temporal models. Cressie and Wikle supply a unique presentation that incorporates ideas from the areas of time series and spatial statistics as well as stochastic processes. Beginning with separate treatments of temporal data and spatial data, the book combines these concepts to discuss spatio-temporal statistical methods for understanding complex processes. Topics of coverage include: Exploratory methods for spatio-temporal data, including visualization, spectral analysis, empirical orthogonal function analysis, and LISAs Spatio-temporal covariance functions, spatio-temporal kriging, and time series of spatial processes Development of hierarchical dynamical spatio-temporal models (DSTMs), with discussion of linear and nonlinear DSTMs and computational algorithms for their implementation Quantifying and exploring spatio-temporal variability in scientific applications, including case studies based on real-world environmental data Throughout the book, interesting applications demonstrate the relevance of the presented concepts. Vivid, full-color graphics emphasize the visual nature of the topic, and a related FTP site contains supplementary material. Statistics for Spatio-Temporal Data is an excellent book for a graduate-level course on spatio-temporal statistics. It is also a valuable reference for researchers and practitioners in the fields of applied mathematics, engineering, and the environmental and health sciences.
Продажа f carlevaro econometric modeling and analysis of residential water demand based on unbalanced panel data лучших цены всего мира
Посредством этого сайта магазина - каталога товаров мы очень легко осуществляем продажу f carlevaro econometric modeling and analysis of residential water demand based on unbalanced panel data у одного из интернет-магазинов проверенных фирм. Определитесь с вашими предпочтениями один интернет-магазин, с лучшей ценой продукта. Прочитав рекомендации по продаже f carlevaro econometric modeling and analysis of residential water demand based on unbalanced panel data легко охарактеризовать производителя как превосходную и доступную фирму.